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The cause of the ringing instability in particle-in-cell (PIC) fluid calculations is identified. 
and its properties are studied. The ringing instability is caused by aliasing, just as is the finite 
grid instability previously identified in PlC plasma simulation, and results in large amplitude 
fluctuations in the particle density. The instability occurs when the flow speed drops below a 
critical value, which is lower with higher order interpolation and zero with Gaussian inter- 
polation. The instability growth rate is only weakly dependent on the number of particles per 
cell, but appears to be suppressed by implicit differencing in time. ‘em 1988 Academic Press, inc. 

INTRODUCTION 

In particle-in-cell (PIC) calculations of compressible fluid flow [ 11, an unusual 
instability is sometimes observed. For example, as in the results shown in Figs. l-4 
generated with the VALLE code, large amplitude modulation of the flow variables 
occurs with no obvious, physical cause when the flow speed is smaller than the 
sound speed. The modulation, which has been called the ringing instability, is 
especially evident in plots depicting the particle positions, as shown. 

The modulation illustrated in Figs. l-4 has been identified previously with a 
linear instability due to finite differencing in time [I]. The explicit equations used 
in VALLE are certainly unstable, but the diffusion due to numerical errors in 
calculating convection stabilizes them, except where the flow stagnates. In regions 
of stagnation, the instability grows unimpeded. The amplitude of the resulting 
modulations is bounded by the limited dynamic range of the particles, and the 
energy is concentrated in a few modes. 

More recent investigations with PIC, especially with FLIP [3], indicate that the 
ringing instability is more complex than can be accounted for by a finite time step 
instability alone. Most importantly, with an explicit, but stable, discretization in 
time [3] the instability is observed in regions where the flow speed is low. Further, 
although FLIP can be made to have a negligible amount of dissipation, the 
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FIG. 1. Results of PIC calculations of a shock penetrating a low density, notched region by A. A. 
Amsden, Los Alamos Scientific I.aboratory, 1967, are shown. The shock, represented by closely spaced 
dots, is entering the notch from below. 

FIG. 2. As the shock propagates into the notch, interaction with the walls generates a boundary 
layer. 



RINGING INSTABILITY 

FIG. 3. The characteristic modulation of the particle density due to the ringing instability is %isible in 
t!x boundary layer below the notch. 

instability is not observed when the flow speed is high. Some other source for the 
instability must be sought than unstable differencing in time. 

An alternative cause for the instability is the extensively studied, finite-grid 
instability which occurs in plasma simulations using PIC [4, 51. As Dawson 
describes it [S], the finite grid instability has its origin -‘in a kind of stroboscopic 
effect.” the same kind of effect that causes spoked wagon wheels in western movies 
to appear to be rotating backwards. 

In PIC plasma simulations, the interactions among particles are calculated on a 
grid. Since all modulations of the particle density which have the same amplitudes 
at the grid points will produce the same interaction, two different modulations of 
the particle density with wavelengths that differ only by harmonics of the grid wave 
rrumber, k, = rciil?c (where AX is the mesh spacing), are indistinguishable on the 
grid. They are called aliases. The aliases introduce additional resonances into the 
dispersion relation, which may cause instability through a nonlinear interaction. 

In PIC calculations of compressible fluid flows, the interactions among particles 
are also calculated on a grid, and aliases also occur. A calculation of the dispersion 
indicates that a finite grid instability occurs at low flow speeds where it is the prin- 
cipal component of the ringing instability. It does not occur at all at high ilow 
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FIG. 4. The modulation of the particle density due to the ringing instability saturates when 
minimum density regions are devoid of particles. 

speeds relative to some threshold value which depends on the particle shape 
function. The growth rate is finite for intinitessimal time steps. 

To substantiate these observations, the dispersion theory for the finite grid 
instability is developed and several numerical examples are presented. 

THE PARTICLE-IN-CELL MODEL 

For simplicity, consider compressible flow in one dimension, which is described 
by the continuity and momentum equations, 

(1) 

(2) 
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where p is the mass density, u the fluid velocity, and p the pressure. The equation of 
state is 

p = a’p. (3) 

where a is the sound speed. 
In PIC, the fluid is represented by particles whose interactions are calculated on 

a grid. The particles, labeled +., have position, mass, and velocity, x/,) m/, f and u/, . 
Moments, such as mass and momentum density, are calculated by convolving a 
shape function, S, and the particle distribution. S is a positive function with support 
h and normaiization one. The nth velocity moment, M”, of the particle distribution 
is written, 

The integral becomes a sum over particles. 
In a PIC solution of the compressible flow equations, the density is calculated at 

the grid points, x3 =j Ax. The support, h, is set to Ax. The pressure is calculated 
from Eq. (3). and the Lagrangian velocity at the grid points is advanced from 
Eq. (21, 

The mass matrix, pjj,, is defined below. The acceleration, which is calculated at the 
grid points from the momentum equation, is interpolated to the particles using S, 

2 = 1 j d-r’ F 6(x’ - Xi) S(X -x>,). 
/ 

The displacement of the particles is calculated using the center of mass velocity 
calculated from Eq. (4), 

Since u is a single valued function of X, no particle overtaking or multi-streaming 
can occur. 

The mass density and momentum changes due to particle motion approximate 
the solutions of Eqs. (1) and (2). For example, differentiating Eq. (4) with respect to 
time (with II = 0) yields the mass continuity equation, 
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Similarly, differentiating Eq. (4) (with n = 1) yields the momentum equation, 

The integral is the change in momentum due to the acceleration of the particles. 
This equation can be rewritten in more familiar form by substituting from Eqs. (5), 
(6), and (81, 

(9) 

where P,,? ‘, the mass matrix which appeared in Eq. (5), is defined by, 

p;jr=;xj-dx’6( x’ - x/J S(XJ -x’) S(x, - XJ. 
fi 

The brackets on the right-hand side of Eq. (9) indicate that the acceleration is 
evaluated at the grid points and interpolated elsewhere as in Eq. (6). 

The description of the fluid given by regularizing the particle evolution equations, 
Eqs. (8) and (9), is recognizably an approximation to Eqs. (1) and (2). In deriving 
the dispersion for the PIC equations, Eqs. (8) and (9) will be used rather than the 
particle equations of motion directly. 

THE RINGING INSTABILITY 

Consider an initially uniform gas with density pO and constant flow speed UO, 
which is subjected to perturbations U, and p,. To lowest order in the perturbed 
variables, Eqs. (8) and (9) are written 

(11) 

where p, = a’p, . These equations will be analyzed in semi-discrete form. 
As usual, derivatives with respect to time are approximated by finite differences. 

Consider the family of theta schemes parameterized by 8 and cp, 

(12) 

(13) 
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where u1 = u(.u, r + dt), u” = u(x, t), and intermediate time levels are calculated by 
linear interpolation, 

u, = ;[24: + ug, 

and 

,~=ezl~+(l-e)u~=il,+(6-~)(u:-u~), O<B<l. 

and likewise p@. 
Certain choices of 0 and 4 are distinguished. For an explicit, conditionally stable 

Euler scheme, one chooses f3 = 0, 4 = 1 or vice versa. For the Crank-Nicholson 
scheme, one chooses tI = t, 4 = $. For a semi-implicit, unconditionally stable. 
backward Euler scheme, one chooses 8 = 4 = 1. For energy conservation in the non- 
linear equations, one chooses 0 = i. With 0 = + and 4 = 0, the energy conserving but 
unconditionally unstable scheme discussed by Harlow [l] and analyzed by Daly 
[-?I results. With f3 = + and + < 4 6 1, energy conserving, unconditionally stable, 
implicit schemes with damping of unresolved modes result [3]. 

The pressure is computed at the grid points from Eqs. (3) and (4). The derivatrve 
of the pressure at the grid points is calculated as in Eq. (5). To represent a Raid 
with constant density, particles with equal mass are equally spaced. The particle 
displacement is calculated from Eq. (7). A time step of a PIC fluid calculation is 
completed by calculating the velocity at the grid points from Eq. (4) for the next 
time step. 

One may compare this with plasma simulation using PfC, where particle dis- 
placements depend upon individual particle velocities. By contrast, in a PfC fluid 
calculation the particle displacements depend upon the center of mass velocity. A 
detailed description of a PIC algorithm of this kind is given in Ref. [3]. 

The Fourier transform of the convolved density defined by Eq. (4) for any .? is 
given by 

A point Fourier transform yields p(k), 

Because the number of particles is finite, the number of Fourier modes is aiso finite. 
Thus, when there are II particles in each cell, there are H times as many Fourier 
modes as there are grid points. 

As is pointed out in Ref. [S, Chap. S], difficulty with aliases arises when Eq. (14) 
is inverted to calculate (p, ). Aliases occur because all Fourier modes with 
wavelengths shorter than the grid spacing are indistinguishable at the grid pohnts. 
The inverse of Eq. (14) to calculate (p,) therefore includes the additional modes 
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contributed by the particles, each one an alias of a principal mode. The integral 
over all k is equivalent, because of the periodicity of exp(ik,vi) in k, to the integral, 

, = -cn - I).:2 

The aliases of the principal wave numbers k, --n/Ax< k< z/Ax, are k, with i #O. 
For quantities on the grid, therefore, Eq. (14) should be replaced by, 

<p(k)) =I dk,) SW,)- (16) 

All convolved terms, when evaluated at grid points, will contribute aliases in the 
same way as the density. For example, one notes that, 

p(k) = a’S(k) c dk,) W,). (17) 

If one assumes the time dependence, 

u(x, t) = u(x) e-‘“‘, 

and introduces the frequency, 8, defined by 

7 (18) 

Equations (5) and (6 j can be written for any mode k,, 

- iIIQ - k, uol Ak,) + ik,po [ I-i(B-;)$+(k,)=O (19) 

-i [O-k&,] p,u(k,)+ik,a’ S&z) 1 SW,) Ak,) = 0. (20) L 
In this form, the coupling between k, and k, is clearly exhibited. Eliminating u(k,) 
from Eqs. (19) and (20), multiplying by S(k,), and summing over 9 yields the 
dispersion relation, 

The solutions to Eq. (21) correspond to the natural oscillations of the system. In 
general, Q is complex and exponentially growing and decaying modes occur. The 
dispersion relation is similar to one obtained for plasma simulation in the limit 
At = 0 with a2 = oi/k’, where wp is the plasma frequency (Ref. [S, Chap. lo]). 

In comparison with conventional finite difference methods, whose behavior is 
recovered from Eq. (21) by retaining only the a = 0 term, the dispersion for PIC 
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contains one or more resonances, the number depending upon the number of par- 
ticles per cell. Each resonance is the result of a particle-wave interaction. For all 
values of 9 different from zero the wave is spurious. Nevertheless, the resonances 
between spurious waves and particles contribute to real waves at the principal wave 
numbers. 

How strongly the false resonances contribute depends upon the properties of 53’ 
and the values of U,. For example, when S decreases rapidly as Ikl increases and 
U, is large, the contribution of the aliases will be relatively small. Conversely, if S 
decreases slowly as Ik( increases and U, is small, the alias contributions are 
relatively large and may cause instability. 

ZERO TIME STEP LIMIT: THE EFFECT OF THE INTERPOLATION ORDER 
ON THE RINGING INSTABILITY 

Nearest Grid Point Interpolation 

A pertinent and particularly simple dispersion relation results when one uses 
nearest grid point interpolation (NGP). NGP is the interpolation used to project 
particle mass on to the grid in the VALLE code [i]. 

With NGP [S], S is given by 

1 
S(x) =- 

0 Ixl>dx/Z 
Ax 1 1x( <Ax/2 I 

and S(k) by 

S(k) = 
sin(k AX/~) 

k A.42 ’ 

(22) 

(23) 

FIG. 5. The phase velocity, Re(o/k), labeled OMEGA in the figure, for NGP interpolation withoi;: 
aliases decreases monotonically with increasing k for all values of M. 
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FIG. 6. The phase velocity, OMEGA, for NGP interpolation with aliases 
value with increasing k for all MC 1, then decreases. 

increases to a maximum 

With K = (Q/U0 - k), M= U,/a (Mach number), and 0 = 4 = + (Crank-Nicholson 
scheme), summing the terms in Eq. (21) yields 

~2sin2[!L$]=fji~2[!$T]. (24) 

When M2 > 1, Eq. (24) is satisfied by real values of K for all k. However, when 
M’< 1 there are values of k for which no real solutions exist. Then, K is complex 
with Re(Kj = x/Ax and Im(K) given by 

M’cosh2[Im’~‘A~~]=sin?[~]. 

In Figs. 5-7, the properties of the finite grid instability with NGP are illustrated. 

FIG. 7. The growth rate of the finite grid instability with NGP interpolation, Im(w/k) labeled 
GAMMA in the figure. is positive in that region of the (M, k! plane where the phase velocity is 
decreasing with k. Elsewhere it is zero. 
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In Fig. 5, Re(o) is plotted when no aliases are included and only the 9 = 0 term 
contributes. The dispersion is exactly that which results with a stable finite 
difference method. The growth rate, Im(q’k), is negligible. The phase velocity, 
Re(<o,lk), decreases monotonically with increasing k, and the maximum value equal 
to Cio + CI at k = 0 agrees with the analytic value. The decrease with increasing k is 
due to the shape function. In Fig. 6, the corresponding Re(o/kj is plotted with 
- 10 d +Z < 10 in Eq. (21). For all values of M, the phase velocity increases with k to 
a maximum value and then decreases. For small values of M, the wave number 
corresponding to the maximum phase velocity is smaller than it is at large values of 
M. In Fig. 7, Im(o/k) is plotted. Only M= 0 and M> 1 are stable for all values oC 
k. For values of M between, the boundary between stabie and unstable values of k 
coincides with the values at which Re(w,%) is a maximum. The maximum Im(w> 
occurs when A4 is about 0.3, and corresponds to a growth time equal to two 
oscillations at the natural frequency. 

The dependence on M explains the occurrence of the instability in stagnating 
flow. even at zero time steps. It also accounts for the absence of the instability in 
high speed flow. 

Nigher Order Interpolation 

Higher order interpolation, which means the use of higher order polynomials for 
S, includes several distinguishable classes of functions whose properties are 
different. 

For example, consider the Gaussian particle shape function, 

With this function and h = Ax, the ringing instability does not occur. For all values 
of M, the growth rate, Im(o), is essentially zero and the phase velocity, Re(oik), 
looks very much like Fig. 5. 

The result is of limited use, because the bandwidth of the projection operator that 
results from its use includes the entire grid. One must compute, or tabulate, the 
error function, and one loses the locality that seems appropriate for hydrodynamic 
flow. Nevertheless, it identifies the role of the shape function and its support in the 
instability. 

A class of functions with compact support, which is discussed extensively by 
Birdsall and Eangdon [S], is generated by convolving the NGP shape function 
with itself. These functions all reproduce a linear function exactly, and thus their 
projection on to the grid is calculated by evaluating the shape function at the grid 
vertices. 

For example, linear interpolation (also called area-weighting) is defined by 
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FIG. 8. The growth rate for the finite grid instability with area-weighting is shown. The portion of 
the (A&, k) plane where the growth rate is positive is smaller, and the maximum growth rate (0.16) less 
than with NGP. 

and can be derived from the general rule 

S, + 1(x) = j- dx’ S,(x’) S,(x -xl). 

Consequently, the Fourier transform of S, is simply 

S,(k) = (So(k))“+ l= [ si;“d”,x:‘)r+ ‘. 

The dispersion for area weighting is shown in Fig. 8. Area-weighting is more stable 
then NGP at all flow speeds: the critical value of M for marginal stability is about 

TABLE I 

The Effect of Interpolation on the Finite Grid Instability 

Maximum growth rate (Im(w)/ka) 

Mach number so S’ s’ 

0.1 0.6857 0.1506 0.02739 
0.2 0.6801 0.2206 0.05798 
0.3 0.669 1 0.2388 O.OOOOO 
0.4 0.6526 0.1768 
0.5 0.6309 0.0000 
0.6 0.6033 
0.7 0.5652 
0.8 0.4837 
0.9 0.3517 
1.0 0.2344 
1.1 0.0000 
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FIG. 9. The growth rate of the finite grid instability with TSC interpolation is shown. Five ridges are 
visible, each one associated with an alias contribution. The maximum growth rate (0.06) is one-tenth 
and the critical Mach number (0.2) one-fifth that with NGP. 

0.4 compared with 1.0 for NGP, and the maximum growth rate is about one-third 
that for NGP, A comparison of the variation of the maximum growth rate with M 
between NGP and area-weighting is given in Table I. 

With quadratic (TX) interpolation, as shown in Fig. 9, the maximum growth 
rate of the ringing instability is reduced still more [7]. The interpolation function, 
which is written, 

smooths the data. Its value, when 5 = 0, is +Ax not l/Ax. The maximum growth rate 
of the instability is less than 0.06, about h that with NGP, and the value of M for 
marginal stability is about 0.2. In two dimensions, the support of the interpolation 
function is nine grid points, compared with four for linear interpolation. The extra 
cost is significant, but the support for TSC is consistent with using one column or 
row of ghost or guard points at the edge of the mesh allowing one to impose boun- 
dary conditions similarly to NGP or area-weighting. The variation of the maximum 
growth rate for Sz with M is compared with that for S, and S, in Table I. 

Monaghan [7] considers another kind of interpolation function that reproduces 
polynomials of degree 2. The kernel, which is written, 
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FIG. 10. The growth rate with W interpolation is positive only in several isolated ridges. Increasing 
the number of aliases from one to three will generate the ridges in sequence from left to right, the iirst 
alias giving the largest contribution. The maximum growth rate (0.04) is slightly less than with TSC 
interpolation, shown in Fig. 9, but the maximum unstable Mach number is larger. 

gives ordinary, not smoothing interpolation, and its first derivative is continuous 
giving it similar smoothness to the quadratic interpolation function. The maximum 
growth rate and the region of instability, as shown in Fig. 10, are similar to S1. 
However, the support is one cell larger, contributing to 25 grid points in two 
dimensions rather than 9 as for quadratic interpolation. Since the reduction in 
growth rate of the ringing instability is marginal, the increased cost discourages its 
use in PIC calculations. 

Number of Particles 

As discussed above, the number of aliases that contribute to the ringing 
instability increases as the number of particles per cell. If the number of aliases 
affects the growth rate of the instability, it is important to know how so that the 
correct number of particles can be used. 

TABLE II 

Contribution of Aliases to the Ringing Instability 

Maximum growth rate (Im(o)/ka) 

Number of aliases so S’ 

0 0.0000 0.0000 
1 0.5522 0.2363 
2 0.5982 0.2384 
4 0.6298 0.2387 

loo 0.669 1 0.2388 
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FIG I 1. With one alias, ringing produces one unstable ridge in the (M, k) plane with area-weighting 
interpolation. The ridge corresponds to the fastest growing mode with the maximum unstab!e Mach 
number shown in Fig. 8. 

Consider the relative contribution of the 9 and a + 1 alias term in Eq. (21) with a 
spline interpolation function of order n. The relative contribution of the two aliases 
will be dominated by the dependence of the Fourier transform of S on the alias 
number. The ratio of sequential terms is given by 

&(k, + t 1 k Ax/2+pr n+l 

St&) kAx/2+(g+l)nm I . 

For all values of n, the ratio is smallest when 9 = 0; the biggest change in t 
persion occurs when the first alias contribution is added. Further, the contributions 
fall off more rapidly with +Z as the order of interpolation increases. 

Quantitative comparisons of the dispersion with differing numbers of aliases, 
shown in Table II for S, and S,, indicate that the relative change in the dispersion 
between one alias and many is modest. With NGP, the relative difference is less 
than 1%. With area-weighting, the corresponding difference is less than 20%. 

There are qualitative changes in the dispersion with increasing number of aliases, 
as illustrated by a comparison of Fig. 11, with one alias, and Fig. 8, with five. Each 
alias adds an unstable mode with a lower growth rate and lower critical Mach 
number than the one before. 

Evidently, increasing the number of particles is ineffectual in suppressing the 
ringing instability. As soon as one has particles at all, the instability may occur, and 
adding more will not cause it to go away. 

FINITE TIME STEP: THE EF:FECT OF IMPLICIT DIFFEKENCING 
ON THE RINGING INSTABILITY 

Consider the effect of a finite time step on the ringing instability. When 6 = 1 and 
4 = 0, the explicit, but energy conserving differencing used in VALLE is recovered. 
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FIG. 12. With unstable, explicit time differencing (0 = t, q5 = 0), a weakly growing instability occurs 
for all values of li and M. 

Let us define, first, a stability index, C, which relates the time step, grid spacing, 
and flow velocity, 

iJ, At = C Ax. 

With C = 1 (i.e., a time step satisfying the Courant condition for stability when 
9 = I), the dispersion shown in Fig. 12 results with no aliases. The maximum value 
of Im(o/k) is similar to that with TSC, and much less than with NGP. However, 
the dependence on M and k is very different. There is no region of the (M, k) plane 
where the growth rate is zero. Instability due to a finite time step is weaker but 
more universal than the ringing instability. 

With implicit differencing in time, 8 + 4 > 1, the ringing instability can be sup- 
pressed with C$ 1. Consider NGP interpolation. Substituting C into the definition 
for K below Eq. (23) and summing the series results in modification of the disper- 
sion relation given in Eq. (21), 

Consider the behavior of Q as M tends toward zero, with (0 - 4) = (4 - t), and 
with Q replaced by Q = Q, + MQ, + . . ., one finds that 

Because the assumed solution depends upon time as exp( -iwt), Im(Q) < 0 
corresponds to an exponentially decaying mode. Thus, when 13 + 4 > 1, the ringing 
modes are damped for small A4 where otherwise they would grow. 
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FIG. 13. With implicit, backward-Euler time differencing, damping for all values of k and X is 
superimposed on the ringing instability. The damping with C = 10 reduces rhe maximum grcwfth rate by 
one third in comparison to Fig. 8. 

This result is not unexpected when one considers the effect of very large time 
steps on the dynamical equations. As Hirt [S] points out, solutions with large C 
approach the incompressible flow limit. As is clear from the dispersion for the 
ringing instability, as one approaches M = 0, the growth rate approaches zero. 

In compressible fluid flow problems, this result does not appear to be particularly 
useful, because to obtain stabilization, one must use a very large time step that may 
not resolve the time scale of interest. In Fig. 13, for example, the dispersion with 
area-weighting, C = 10, and 8 = 4 = 1 is similar to that shown in Fig. 8. The most 
evident difference is the shift downward in the basal surface due to the dissipation 
of the backward-Euler time differencing. The maximum growth rate and the criticai 
Mach number are both reduced, but the modes due to the aliases are all present. To 
suppress the instability completely requires large values of C so that all modes with 
w At = 0( 1) are damped, including stable, physical modes of the system. However, 
one might still be motivated by stability theory to use an implicit method with PZQ 
to model problems with widely separated fast (e.g., sound waves) and slow time 
scales (e.g., low-speed flow). One would then choose the time step to resolve rhe 
slow scale, and not be swamped by the ringing instability. 

However, the numerical results cause one to be more optimistic about the 
usefulness of implicit differencing than stability theory would allow. In many cases, 
the ringing instability is absent with implicit, and present with explicit differencing. 
(This may be because the approximations made in deriving Eqs. 12 and 13 are less 
valid as the time step increases.) 

NUMERICAL EXAMPLE: HELIUM BUBBLE 

The properties of the ringing instability are illustrated by a calculation of the 
interaction of a weak, plane shock in air with a spherical helium bubble. The 



a 

TIME = l.OO1~lC” CYCLE 93 

b 

TIME = 1.006X10" CYCLE 62 

FIG. 14. The pressure variation in the calculation of the interaction of an air shock with a helium 
bubble depends upon the order of interpolation. As the order of interpolation increases in these explicit 
calculations from NGP in (a), through area-weighting in (b). to TSC in (c). the short-wavelength 
perturbations in pressure decrease. The shock is moving from left to right: the top boundary coincides 
with an axis of symmetry. 
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TIME = 1.014~10~ CYCLE 55 

FIG. 16Coniimrti. 

calculation models an experiment by Haas and Sturtevant [9], which Besnard and 
Haas [lo] and Picone et al. [ 11] have modeled using finite difference methods. 
Evans et al. modeled similar problems with PIC 1121. The same problem is 
solved several different ways; with NGP, area-weighting, and TSC interpolation 
and with explicit and implicit differencing in time. The occurrence and growth 
of the instability are shown to depend upon the order of interpolation and time- 
differencing as predicted by the dispersion relation 

In the problem, a spherical bubble of helium of radius R is immersed in air 
confined by a long, cylindrical tube of radius 2R. A length 6R is included in the 
domain of the calculation. Time is measured in signal transit times across the cylin- 
der radius. 

The air and helium are initially in pressure equilibrium, with density ratio 
~uJ~~~~=0.138, and sound speed ratio, a ue/uair = 2.94. For simplicity, both are 
assumed to have I’= 1.4. Air is injected into one end of the cylinder, producing a 
shock with strength 1.22. Air is allowed to flow out the other end as though the 
tube were much longer than 6R. 

The domain is resolved by a 20 x 60 mesh with square cells. A time step is com- 
puted each cycle that satisfies the Lagrangian flow condition, 

V.u At> -1, 
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for implicit calculations, or the Courant condition, 

[lul +a] At<Ax, 

for explicit calculations. Initially, nine particles per cell represent the fluid. 
Additional particles are added at one end of the tube to represent injected air. 

The results for the various calculations are compared at t = 1. The pressures for 
the explicit calculations with NGP, area-weighting, and TSC interpolation are 
shown in Fig. 14. The figures are oriented with inflow to the left and axis of sym- 
metry at the top. (The differences in the pressure among the cases is due to an 
inconsistency in the boundary data and the downstream flow conditions that causes 
the pressure at the boundary to oscillate in time.) The shock has progressed half the 
length of the mesh, and all the way across the bubble at t = 1. It is represented in 
the plots by the gentle ramp in pressure which rises from right to left. 

a 

1 

b C 

FIG. 15. The helium particles corresponding to Fig. 14 show a similar decrease in fluctuations with 
increasing order of interpolation. However, ringing in all cases has caused the characteristic disordering 
of the particles. 



TIMC - 1.021~10~ 

TIME - ! .021*10° CYCLE 37 

FIG. 16. Implicit time differencing gives further reductions in pressure fluctuations with arca- 
weighting (a j and TSC (b) interpolation below the levels depicted in Fig. 14. The Courant number is 
about 2. 
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With NGP interpolation, the fluctuations in the pressure are large throughout 
the shocked fluids. With area-weighting, and even more with TSC, the fluctuations 
decrease. Evidently, the time step increases as the fluctuations decrease. With TSC 
interpolation, half as many cycles are needed to advance the solution the same 
physical time. 

From other diagnostics, the flow velocity in the helium corresponds to 0.1 < 
M < 0.3, and all three interpolation functions support the ringing instability. In air, 
however, where M< 1 behind the shock, only NGP is unstable. Thus, with NGP 
the fluctuations are large everywhere. With area-weighting, and especially with 
TSC, the fluctuations are confined to the helium (along the axis of symmetry, 
behind the shock). 

The corresponding particle plots are shown in Fig. 15. Only the particles in the 
helium bubble are shown. The ringing instability causes a growing disordering of 
the initially rectilinear arrays of particles, which stops, typically, only when the par- 
ticles are clumped in bands one wavelength of the unstable mode apart. At the early 
time shown, the disordering is distributed throughout the bubble with NGP; the 
disordering has progressed only to a few horizontal gaps with TSC. The growth 
rate is least with TSC, consistent with the dispersion derived above. 

a b 

FIG. 17. The ringing instability has caused no disordering in the particles corresponding to Fig. 16 
with area-weighting (a) and TSC (b) interpolation when time is differenced implicitly. 
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The pressures for the implicit calculations with area-weighting and TSC inter- 
polation are shown in Fig. 16. The time step is larger than before. with CZ 1.8, but 
not large enough to cause significant damping. Nevertheless, the implicit cases are 
obviously smoother than the explicit cases. In fact, in the corresponding parmAe 
plots shown in Fig. 17: the ringing instability is completely absent. The particles are 
beautifully ordered. 

CONCLUSIONS 

The investigation of the ringing instability in PIC calculations of compressible 
fluid flow has yielded several clear results. The hnite-grid instability identified in 
plasma simulations also occurs in PIC fluid calculations where it is the principal 
contributor to the ringing instability. The strength of the ringing instability can be 
reduced using higher order interpolation with extended support: it can be 
eliminated if the support includes the entire mesh. Even with relatively low-order 
interpolation. the ringing instability appears not to grow with implicit differencing 
in time. 

The ringing instability exhibits little dependence on the number of aliases. 
Correspondingly, there is little dependence on the number of particles per cell that 
are used in a calculation. 

No scaling with the grid spacing is observed. I-Iowever. the introduction of a 
dissipation length scale through a viscosity would introduce a scaling. The probable 
overall effect would be stabilizing. 

The results of this analysis and the existence of a similar instability in plasma 
simulation together suggest the finite grid or ringing instability is a fundamental 
property of particle-in-cell codes. The large number of modes supported by the 
particles that are not distinguished on the grid is the source of the instability. Only 
measures that remove this degeneracy without introducing large dissipation wiil 
eliminate the instability without diminishing the usefulness of the PIC method. 
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